NF-AT4 kinase involved in the attenuation of calcium signalling in the nucleus.

Received 13 May; accepted 14 June 1996.

ACKNOWLEDGEMENTS. We thank T. Hoey and S. McKee for NF-AT4 cDNA; J. Rooney, M. Hodge and L. Grimber for advice on NF-AT4 transactivation; M. Chaffee, T. Bestor, P. Silver and L. Lam for reagents and advice on construction of GFP–NF-AT4; L. Ma, R. Davis and M. Kirschner for instruction and use of their imaging systems; J. Goldberg for protein phosphatase-1 coordinates; M. Shibahara, S. E. Masuda and S. Nakamura for antibodies; B. Seidler, A. Jiao, A. Yang, C. Waker, B. Sackman and H. Green for discussion; and all members of our laboratory for reagents and advice. This work was supported by a fellowship to F.S. from the Human Frontier Science Program and grants from the NIH and the American Cancer Society to F.M.

CORRESPONDENCE and requests for materials should be addressed to (e-mail: mckee@warren.med.harvard.edu).

RNA-catalysed RNA polymerization using nucleoside triphosphates

Eric H. Eklund & David P. Bartel

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA

The hypothesis that certain RNA molecules may be able to catalyse RNA replication is central to current theories of the early evolution of life1,4. In support of this idea, we describe here an RNA that synthesizes RNA using the same reaction as that employed by protein enzymes that catalyse RNA polymerization. In the presence of the appropriate template RNA and nucleoside triphosphates, the ribozyme extends an RNA primer by successive addition of up to six mononucleotides. The added nucleotides are joined to the growing RNA chain by 3′,5′-phosphodiester linkages. The ribozyme shows marked template fidelity: extension by nucleotides complementary to the template is up to 1,000 times more efficient than is extension by mismatched nucleotides. Ribozymes that ligate RNA have been found in nature4,5 and have been isolated from large pools of random RNA sequences6,11. Of particular interest for exploring the possibility of self-replicating RNA are ligation ribozymes that, like RNA polymerases, join RNA substrates using reactions in which pyrophosphate (PPi) is displaced11,12. The class I liga, a ribozyme derived from random RNA sequences, efficiently catalyses a

FIG. 4 Catalytically inactive calcineurin mutants are exclusively cytoplasmic and interfere with NF-AT4 translocation. a, Model of calcineurin active site based on conserved residues in protein phosphatase (ref. 17). The three histidine residues (at positions 101, 160 and 250) mutated to glutamine are labelled. The two metal ions are shown in blue, adjacent to a phosphate group. These mutants were synthesized in vitro and tested for catalytic activity towards the RII substrate19. The three inactive ΔCNA mutants are located exclusively in the cytoplasm of transfected cells, as judged by immunofluorescence. When co-transfected with NF-AT4, the H160Q and H290Q mutants suppress the ability of endogenous calcineurin to translocate NF-AT4 when stimulated with ionomycin (asterisk). b, Wild-type ΔCNA is primarily nuclear and induces the nuclear translocation of NF-AT4 (left panels). In contrast, ΔCNA-H160Q is exclusively cytoplasmic and fails to translocate NF-AT4 (right panel). c, Calcium signalling through calcineurin and NF-AT. Initially, both calcineurin (CaN and CaNβ) shows in its auto-inhibited form, and NF-AT4, with masked nuclear location signals, reside in the cytoplasm. Calcium activates calcineurin, which ten bonds to a dephosphorylates NF-AT4, causing an unmasking of its nuclear location signals. Both NF-AT4, and the associated CnA are translocated to the nucleus, where they encounter a putative NF-AT4 kinase. As calcineurin activity decreases at the end of calcium signalling, the NF-AT4 kinase predominates and promotes the nuclear export of NF-AT4, NLS and NES refer to putative nuclear localization and export signals, respectively.

METHODS. Mutagenesis of ΔCNA and analysis of the catalytic activity of mutants were done essentially as described19. For analysis of dominant-negative activity of the calcineurin mutants, BHK cells were transfected with either NF-AT4 alone or with plasmid expressing mutant ΔCNA and CaNβ. After 16 h expression, cells were treated with ionophore for 30 min and processed for immunofluorescence to assay for NF-AT4 translocation.
reaction in which the 3'-hydroxyl of one substrate RNA attacks the 5'-triphosphate of another substrate molecule, forming a new phosphodiester linkage with concomitant release of pyrophosphate\(^{1,2}\). To explore this ribozyme’s potential as a starting point for developing an RNA polymerase, we examined whether it could utilize a mononucleoside triphosphate rather than an oligonucleotide triphosphate as one of its substrates (Fig. 1a). When incubated with a primer RNA, GTP, and a template RNA designed to align the primer with the GTP by means of Watson–Crick pairing, the ribozyme elongated the primer by addition of GMP (Fig. 1b). When assayed over a range of GTP concentrations, the reaction showed saturable kinetics that were consistent with a single GTP-binding site (Michaelis–Menten parameters, \(K_{mGTP} = 5\) mM, \(k_{cat} = 0.3 \text{ min}^{-1}\)). In the presence of excess primer-template, catalytic turnover was observed (7.5 turnovers in one hour, using 0.1 \(\mu\)M ribozyme, 5 \(\mu\)M primer, 5 \(\mu\)M template, 3 mM GTP). Analysis of the product confirmed that GMP was joined to the primer by a 3',5'-phosphodiester linkage (Fig. 1c).

The primer extension reaction was highly specific for elongation using GTP, the Watson–Crick match to the template. The other three nucleotides added 600 to 1,000 times less efficiently (Fig. 1b). When the template RNA was substituted with templates designed to code for other nucleotides, addition by the Watson–Crick match was always favored over addition by mismatch possibilities (Table 1). The \(k_{cat}/K_{mGTP}\) values for all 16 template−NTP (where NTP is any nucleoside triphosphate) combinations can be used to calculate a standard Watson–Crick fidelity of 0.85 (Table 1). In other words, if given all four NTPs at equimolar concentrations, extension by the matched nucleotide would comprise 85% of the total extension. Certain asymmetric NTP ratios produced observed fidelities significantly greater than 0.85; the observed fidelity averaged 0.92 when the GTP concentration was uniformly lowered to one-tenth of the concentration of the other three NTPs (Fig. 1d). At an observed fidelity of 0.92, extension by the Watson–Crick combination is, on average, 34 times faster than that by each of the three non-Watson–Crick combinations (0.92, compared to 0.027).

To examine the ribozyme’s ability to extend a primer by more than one nucleotide, two additional template bases were inserted in the region between the primer−template helix and the template−ribozyme helix (Fig. 2a). This insertion makes three template residues available to specify the successive addition of up to three nucleotides. The template was also joined to the 5' terminus of the ribozyme; tethering of the template to the ribozyme typically enhances extension efficiency by 2- to 5-fold. When incubated with all four NTPs and primer, such ribozyme–template

![Figure 1](https://example.com/figure1.png)
fusions catalysed primer extension by three nucleotides (Fig. 2). As polymerization proceeds, the primer–template helix shifts relative to the site of chemistry, changing the identity of the Watson–Crick pairs at most positions in the helix. With most templates shown in Fig. 2, none of the primer–template base pairs (counting back from the 3′ terminus of the growing strand) is the same during all three elongation steps. This shows that, with polymericases found in nature, there is no absolute requirement for any particular Watson–Crick pair at any position of the primer–template helix.

The accuracy of extension was reassessed using the ribozyme–template format that permits multiple nucleotide addition. Although extension slowed considerably when switching from the single-nucleotide-addition format, the average fidelity of polymerization across from the four homopolymeric template segments (0.88; Fig. 2e) was similar to that observed for single nucleotide addition (0.92; Fig. 1d). Another similarity between the two formats was that correct extension directed by G or C template residues was 10 to 40 times more efficient than that directed by A or U residues (Table 1 and Fig. 2).

Although much lower than the 0.996 fidelity seen with viral polymerases that synthesize RNA using RNA templates, the observed fidelity is significantly greater than would be expected from the intrinsic stability of Watson–Crick matches compared with the stability of mismatches. Watson–Crick pairs at the ends of RNA helices are sometimes no more stable than are mismatches. Using the relative stabilities of terminal base pairs and mismatches to predict the fidelity of polymerization yields a maximal (using optimal NTP ratios) fidelity averaging about 0.40—a mere twofold advantage of Watson–Crick matches over non-Watson–Crick combinations (0.40, compared to an average of 0.20 for each of the three mismatches).

Use of nucleoside triphosphates to extend an RNA or DNA molecule is a fundamental reaction in all living organisms. The reaction shown in Fig. 2 is similar to that of a telomerase, a specialized DNA polymerase that uses a short segment of a built-in RNA template to direct the extension of chromosome ends. It has been proposed that before the advent of protein catalysis, a ribozyme with activity similar to that of the transfer RNA nucleotidylytransferase served as a telomerase. Although tRNA nucleotidylytransferase is primarily responsible for adding and maintaining the CCA-3′ tail of the tRNA acceptor stem, this cellular enzyme can function as a simple telomerase for viral genomic RNAs that assume tRNA-like structures at their 3′ ends. To the extent that our ribozyme can add a CCA-3′ tail to an RNA primer (Fig. 2c), we confirm that RNA can catalyse this reaction which is thought to have been important during the RNA world.

More central to the RNA-world hypothesis than an RNA telomerase is an RNA replicase, an RNA polymerase ribozyme which, with the aid of an RNA template encoding a second polymerase molecule, would be capable of autocatalytic replication. Previous efforts to design ribozymes with polymerase properties have focused on derivatives of self-splicing introns that promote RNA oligonucleotide disproportionation reactions, where one RNA molecule becomes longer at the expense of a second RNA. Although progress has been made by this approach, reactions using self-splicing intron derivatives still suffer from low Watson–Crick fidelity, the highest fidelity achieved thus far has been 0.65 (ref. 28). More important, polymerization by oligonucleotide disproportionation is intrinsically prone to undesirable side reactions, which has led to the assertion that the substrates of a replicase ribozyme must have been more analogous to those of contemporary polymerases; that is, they must have been activated by a moiety like pyrophosphate rather than by RNA.

The RNA polymerization in Fig. 2 demonstrates features essential for polymerization by an RNA replicase, such as template dependence, use of appropriately activated mononucleotides, regioselectivity for the formation of 3′,5′-phosphodiester bonds, and fidelity of more than 0.85 to 0.996.
TABLE 1 Template dependence of single nucleotide addition

<table>
<thead>
<tr>
<th>Template</th>
<th>ATP</th>
<th>CTP</th>
<th>GTP</th>
<th>UTP</th>
<th>Standard fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A-</td>
<td>0.062</td>
<td>0.054</td>
<td>0.12</td>
<td>1.0</td>
<td>0.81</td>
</tr>
<tr>
<td>-C-</td>
<td>0.0010</td>
<td>0.0014</td>
<td>1.0 (68)</td>
<td>0.0013</td>
<td>0.996</td>
</tr>
<tr>
<td>-G-</td>
<td>0.0017</td>
<td>1.0 (28)</td>
<td>0.0017</td>
<td>0.071</td>
<td>0.93</td>
</tr>
<tr>
<td>-U-</td>
<td>1.0 (2.5)</td>
<td>0.015</td>
<td>0.34</td>
<td>0.048</td>
<td>0.71</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
</tr>
</tbody>
</table>

Reactions were performed as for Fig. 1. For each template–NTP combination, the apparent second-order rate constant, K_{app}/K_{on}, was determined from the slope of the line plotting observed rate constants as a function of NTP concentration (using NTP concentrations at least 10 times lower than the K_{on}). For each template, the four K_{app}/K_{on} values were normalized to the K_{app}/K_{on} value of the Watson–Crick match, yielding the relative efficiencies of addition. (The relative efficiency of addition for a mismatch is the same as its error frequency. Standard fidelity was calculated as the K_{app}/K_{on} value of the Watson–Crick match, divided by the sum of the K_{app}/K_{on} values for all four NTP possibilities. The average fidelity is the geometric average of the fidelities. (Because the overall accuracy of RNA polymerization is represented by the product of the fidelities for each added nucleotide, geometric averages are reported throughout this study.)

*The K_{app}/K_{on} values (M$^{-1}$ min$^{-1}$) for Watson–Crick matches are shown in parentheses.

Reactions were performed as for Fig. 1. For each template–NTP combination, the apparent second-order rate constant, K_{app}/K_{on}, was determined from the slope of the line plotting observed rate constants as a function of NTP concentration (using NTP concentrations at least 10 times lower than the K_{on}). For each template, the four K_{app}/K_{on} values were normalized to the K_{app}/K_{on} value of the Watson–Crick match, yielding the relative efficiencies of addition. (The relative efficiency of addition for a mismatch is the same as its error frequency. Standard fidelity was calculated as the K_{app}/K_{on} value of the Watson–Crick match, divided by the sum of the K_{app}/K_{on} values for all four NTP possibilities. The average fidelity is the geometric average of the fidelities. (Because the overall accuracy of RNA polymerization is represented by the product of the fidelities for each added nucleotide, geometric averages are reported throughout this study.)

*The K_{app}/K_{on} values (M$^{-1}$ min$^{-1}$) for Watson–Crick matches are shown in parentheses.

Reactions were performed as for Fig. 1. For each template–NTP combination, the apparent second-order rate constant, K_{app}/K_{on}, was determined from the slope of the line plotting observed rate constants as a function of NTP concentration (using NTP concentrations at least 10 times lower than the K_{on}). For each template, the four K_{app}/K_{on} values were normalized to the K_{app}/K_{on} value of the Watson–Crick match, yielding the relative efficiencies of addition. (The relative efficiency of addition for a mismatch is the same as its error frequency. Standard fidelity was calculated as the K_{app}/K_{on} value of the Watson–Crick match, divided by the sum of the K_{app}/K_{on} values for all four NTP possibilities. The average fidelity is the geometric average of the fidelities. (Because the overall accuracy of RNA polymerization is represented by the product of the fidelities for each added nucleotide, geometric averages are reported throughout this study.)

*The K_{app}/K_{on} values (M$^{-1}$ min$^{-1}$) for Watson–Crick matches are shown in parentheses.

bonds, and absence of sequence requirements within the primer–template helix. However, it is deficient in two key respects: the template is covalently linked to the catalyst, and polymerization beyond three nucleotides is blocked, presumably by specific base pairing of the template to the ribozyme. The single-nucleotide-addition experiments demonstrate that the ribozyme can function with an external rather than a tethered template (Fig. 1). The block to polymerization by the ribozyme–template helix is more difficult to overcome, but it was partially circumvented when template and ribozyme were designed to be base-pair in multiple registers (Fig. 3a). When using this strategy with an external template, polymerization of up to six nucleotides was detected after a long (6-day) incubation (Fig. 3b).

The progress made in deriving an RNA polymerase from random RNA sequences bodes well for the eventual construction of autocatalytic RNA replication. It will be of interest to examine the extent to which in vitro evolution and engineering efforts can improve the properties of our ribozyme. Extended copying of any RNA sequence may be possible if the 5’-portion of the template was recognized primarily by sugar–phosphate contacts rather than by pairing to template bases. Other critical improvements would involve more avid NTP binding and increased template fidelity.

ACKNOWLEDGEMENTS. We thank K. Williams, M. Moore, T. Tschirch and J. Thiem for helpful comments on the manuscript. This work was supported by a grant from the NIH and by a grant from the W.M. Keck Foundation to the Whitman Fellows program.

CORRESPONDENCE and requests for materials should be addressed to D.P.B.